Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cells ; 10(12)2021 11 25.
Article in English | MEDLINE | ID: covidwho-1542428

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.


Subject(s)
Arachidonic Acids/therapeutic use , Endocannabinoids/therapeutic use , Gastrointestinal Microbiome , Gastrointestinal Tract/pathology , Lung/pathology , Polyunsaturated Alkamides/therapeutic use , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/microbiology , Animals , Antimicrobial Peptides/metabolism , Arachidonic Acids/pharmacology , Butyrates/metabolism , Cecum/pathology , Cell Separation , Colon/drug effects , Colon/pathology , Discriminant Analysis , Dysbiosis/complications , Dysbiosis/microbiology , Endocannabinoids/pharmacology , Enterotoxins , Female , Gastrointestinal Tract/drug effects , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymphocyte Activation/drug effects , Mice, Inbred C57BL , Pneumonia/drug therapy , Pneumonia/microbiology , Polyunsaturated Alkamides/pharmacology , Respiratory Distress Syndrome/complications , T-Lymphocytes/drug effects
2.
Methods Mol Biol ; 2311: 185-193, 2021.
Article in English | MEDLINE | ID: covidwho-1482181

ABSTRACT

Studies of blood-brain barrier (BBB) require developing of a novel and convenient in vitro endothelial cell model. We isolated primary human and rodent brain microvascular endothelial cells and developed methods for culturing, characterization, and high-efficiency transfection of endothelial cells. Here, we describe the improved methods to obtain in vitro human and rodent BBB models to study expression of endogenous and exogenous genes of interest.


Subject(s)
Blood-Brain Barrier/physiology , Brain/blood supply , Cell Separation , Endothelial Cells/physiology , Microvessels/cytology , Transfection , Animals , Blood-Brain Barrier/metabolism , Cell Culture Techniques , Cell Differentiation , Cell Proliferation , Cells, Cultured , Endothelial Cells/metabolism , Fetus , Gestational Age , Humans , Mice , Rats
3.
Front Immunol ; 12: 730766, 2021.
Article in English | MEDLINE | ID: covidwho-1463473

ABSTRACT

The SARS-CoV-2 pandemic has spread to all parts of the world and can cause life-threatening pneumonia and other severe disease manifestations known as COVID-19. This health crisis has resulted in a significant effort to stop the spread of this new coronavirus. However, while propagating itself in the human population, the virus accumulates mutations and generates new variants with increased fitness and the ability to escape the human immune response. Here we describe a color-based barcoded spike flow cytometric assay (BSFA) that is particularly useful to evaluate and directly compare the humoral immune response directed against either wild type (WT) or mutant spike (S) proteins or the receptor-binding domains (RBD) of SARS-CoV-2. This assay employs the human B lymphoma cell line Ramos, transfected for stable expression of WT or mutant S proteins or a chimeric RBD-CD8 fusion protein. We find that the alpha and beta mutants are more stably expressed than the WT S protein on the Ramos B cell surface and/or bind with higher affinity to the viral entry receptor ACE2. However, we find a reduce expression of the chimeric RBD-CD8 carrying the point mutation N501Y and E484K characteristic for the alpha and beta variant, respectively. The comparison of the humoral immune response of 12 vaccinated probands with 12 COVID-19 patients shows that after the boost, the S-specific IgG class immune response in the vaccinated group is similar to that of the patient group. However, in comparison to WT the specific IgG serum antibodies bind less well to the alpha variant and only poorly to the beta variant S protein. This is in line with the notion that the beta variant is an immune escape variant of SARS-CoV-2. The IgA class immune response was more variable than the IgG response and higher in the COVID-19 patients than in the vaccinated group. In summary, we think that our BSFA represents a useful tool to evaluate the humoral immunity against emerging variants of SARS-CoV-2 and to analyze new vaccination protocols against these variants.


Subject(s)
COVID-19/immunology , Cell Separation/methods , Flow Cytometry/methods , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Antibodies, Viral/metabolism , Antibody Formation , Female , Humans , Immunization, Secondary , Immunoglobulin A/metabolism , Immunoglobulin G/metabolism , Male , Middle Aged , Mutation/genetics , Spike Glycoprotein, Coronavirus/genetics , Vaccination
4.
Cytometry A ; 97(9): 887-890, 2020 09.
Article in English | MEDLINE | ID: covidwho-1384155

ABSTRACT

In patients with severe SARS-CoV-2 infection, the development of cytokine storm induces extensive lung damage, and monocytes play a role in this pathological process. Non-classical (NC) and intermediate (INT) monocytes are known to be involved during viral and bacterial infections. In this study, 30 patients with different manifestations of acute SARS-CoV-2 infection were investigated with a flow cytometric study of NC, INT, and classical (CL) monocytes. Significantly reduced NC and INT monocytes and a downregulated HLA-DR were found in acute patients with severe SARS-CoV-2 symptoms. Conversely in patients with moderate symptoms NC and INT monocytes and CD11b expression were increased. © 2020 International Society for Advancement of Cytometry.


Subject(s)
Betacoronavirus/immunology , Coronavirus Infections/immunology , Monocytes/immunology , Pneumonia, Viral/immunology , Aged , Betacoronavirus/pathogenicity , Biomarkers/analysis , CD11b Antigen/analysis , COVID-19 , Cell Separation , Coronavirus Infections/diagnosis , Coronavirus Infections/virology , Female , Flow Cytometry , Host Microbial Interactions , Humans , Leukocytes , Male , Middle Aged , Monocytes/virology , Pandemics , Phenotype , Pneumonia, Viral/diagnosis , Pneumonia, Viral/virology , SARS-CoV-2 , Severity of Illness Index
5.
Adv Sci (Weinh) ; 8(18): e2100323, 2021 09.
Article in English | MEDLINE | ID: covidwho-1316190

ABSTRACT

Blood cell analysis is a major pillar of biomedical research and healthcare. These analyses are performed in central laboratories. Rapid shipment from collection site to the central laboratories is currently needed because cells and biomarkers degrade rapidly. The dried blood spot from a fingerstick allows the preservation of cellular molecules for months but entire cells are never recovered. Here leucocyte elution is optimized from dried blood spots. Flow cytometry and mRNA expression profiling are used to analyze the recovered cells. 50-70% of the leucocytes that are dried on a polyester solid support via elution after shaking the support with buffer are recovered. While red blood cells lyse upon drying, it is found that the majority of leucocytes are preserved. Leucocytes have an altered structure that is improved by adding fixative in the elution buffer. Leucocytes are permeabilized, allowing an easy staining of all cellular compartments. Common immunophenotyping and mRNAs are preserved. The ability of a new biomarker (CD169) to discriminate between patients with and without Severe Acute Respiratory Syndrome induced by Coronavirus 2 (SARS-CoV-2) infections is also preserved. Leucocytes from blood can be dried, shipped, and/or stored for at least 1 month, then recovered for a wide variety of analyses, potentially facilitating biomedical applications worldwide.


Subject(s)
Communicable Diseases/diagnosis , Diagnostic Tests, Routine/methods , Dried Blood Spot Testing/methods , Hematology/methods , Immunophenotyping/methods , Antibodies, Viral/blood , Biomarkers/blood , Blood Specimen Collection/methods , COVID-19/diagnosis , Cell Separation/methods , Communicable Diseases/virology , Erythrocytes/virology , Flow Cytometry/methods , Humans , Leukocytes/virology , RNA, Messenger/blood , SARS-CoV-2/genetics
6.
Signal Transduct Target Ther ; 6(1): 195, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1232065

ABSTRACT

B cell response plays a critical role against SARS-CoV-2 infection. However, little is known about the diversity and frequency of the paired SARS-CoV-2 antigen-specific BCR repertoire after SARS-CoV-2 infection. Here, we performed single-cell RNA sequencing and VDJ sequencing using the memory and plasma B cells isolated from five convalescent COVID-19 patients, and analyzed the spectrum and transcriptional heterogeneity of antibody immune responses. Via linking BCR to antigen specificity through sequencing (LIBRA-seq), we identified a distinct activated memory B cell subgroup (CD11chigh CD95high) had a higher proportion of SARS-CoV-2 antigen-labeled cells compared with memory B cells. Our results revealed the diversity of paired BCR repertoire and the non-stochastic pairing of SARS-CoV-2 antigen-specific immunoglobulin heavy and light chains after SARS-CoV-2 infection. The public antibody clonotypes were shared by distinct convalescent individuals. Moreover, several antibodies isolated by LIBRA-seq showed high binding affinity against SARS-CoV-2 receptor-binding domain (RBD) or nucleoprotein (NP) via ELISA assay. Two RBD-reactive antibodies C14646P3S and C2767P3S isolated by LIBRA-seq exhibited high neutralizing activities against both pseudotyped and authentic SARS-CoV-2 viruses in vitro. Our study provides fundamental insights into B cell response following SARS-CoV-2 infection at the single-cell level.


Subject(s)
B-Lymphocytes/immunology , COVID-19/immunology , Convalescence , Immunologic Memory , RNA-Seq , SARS-CoV-2/immunology , Animals , B-Lymphocytes/pathology , COVID-19/genetics , COVID-19/pathology , Cell Line, Tumor , Cell Separation , Chlorocebus aethiops , HEK293 Cells , Humans , SARS-CoV-2/genetics , Vero Cells
7.
Cells ; 10(5)2021 05 05.
Article in English | MEDLINE | ID: covidwho-1223959

ABSTRACT

A malfunction of the innate immune response in COVID-19 is associated with eosinopenia, particularly in more severe cases. This study tested the hypothesis that this eosinopenia is COVID-19 specific and is associated with systemic activation of eosinophils. Blood of 15 healthy controls and 75 adult patients with suspected COVID-19 at the ER were included before PCR testing and analyzed by point-of-care automated flow cytometry (CD10, CD11b, CD16, and CD62L) in the absence or presence of a formyl peptide (fNLF). Forty-five SARS-CoV-2 PCR positive patients were grouped based on disease severity. PCR negative patients with proven bacterial (n = 20) or other viral (n = 10) infections were used as disease controls. Eosinophils were identified with the use of the FlowSOM algorithm. Low blood eosinophil numbers (<100 cells/µL; p < 0.005) were found both in patients with COVID-19 and with other infectious diseases, albeit less pronounced. Two discrete eosinophil populations were identified in healthy controls both before and after activation with fNLF based on the expression of CD11b. Before activation, the CD11bbright population consisted of 5.4% (CI95% = 3.8, 13.4) of total eosinophils. After activation, this population of CD11bbright cells comprised nearly half the population (42.21%, CI95% = 35.9, 54.1). Eosinophils in COVID-19 had a similar percentage of CD11bbright cells before activation (7.6%, CI95% = 4.5, 13.6), but were clearly refractory to activation with fNLF as a much lower percentage of cells end up in the CD11bbright fraction after activation (23.7%, CI95% = 18.5, 27.6; p < 0.001). Low eosinophil numbers in COVID-19 are associated with refractoriness in responsiveness to fNLF. This might be caused by migration of fully functional cells to the tissue.


Subject(s)
COVID-19/immunology , Eosinophils/immunology , Immunity, Innate , N-Formylmethionine Leucyl-Phenylalanine/metabolism , SARS-CoV-2/immunology , Adult , COVID-19/blood , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing , Case-Control Studies , Cell Separation , Cohort Studies , Eosinophils/metabolism , Flow Cytometry , Healthy Volunteers , Humans , Leukocyte Count , RNA, Viral/isolation & purification , SARS-CoV-2/isolation & purification , Severity of Illness Index
8.
Sci Rep ; 11(1): 4904, 2021 03 01.
Article in English | MEDLINE | ID: covidwho-1112008

ABSTRACT

SARS-CoV-2 virus infection is responsible for coronavirus disease (COVID-19), which is characterised by a hyperinflammatory response that plays a major role in determining the respiratory and immune-mediated complications of this condition. While isolating peripheral blood mononuclear cells (PBMCs) from whole blood of COVID-19 patients by density gradient centrifugation, we noticed some changes in the floating properties and in the sedimentation of the cells on density medium. Investigating this further, we found that in early phase COVID-19 patients, characterised by reduced circulating lymphocytes and monocytes, the PBMC fraction contained surprisingly high levels of neutrophils. Furthermore, the neutrophil population exhibited alterations in the cell size and in the internal complexity, consistent with the presence of low density neutrophils (LDNs) and immature forms, which may explain the shift seen in the floating abilities and that may be predictive of the severity of the disease. The percentage of this subset of neutrophils found in the PBMC band was rather spread (35.4 ± 27.2%, with a median 28.8% and IQR 11.6-56.1, Welch's t-test early phase COVID-19 versus blood donor healthy controls P < 0.0001). Results confirm the presence of an increased number of LDNs in patients with early stage COVID-19, which correlates with disease severity and may be recovered by centrifugation on a density gradient together with PBMCs.


Subject(s)
COVID-19/blood , Cell Separation , Leukocytes, Mononuclear/metabolism , SARS-CoV-2/metabolism , Adult , COVID-19/pathology , Centrifugation, Density Gradient , Female , Humans , Leukocytes, Mononuclear/pathology , Male , Middle Aged
9.
Cytometry A ; 99(1): 81-89, 2021 01.
Article in English | MEDLINE | ID: covidwho-1086343

ABSTRACT

The COVID-19 pandemic has brought biosafety to the forefront of many life sciences. The outbreak has compelled research institutions to re-evaluate biosafety practices and potential at-risk areas within research laboratories and more specifically within Shared Resource Laboratories (SRLs). In flow cytometry facilities, biological safety assessment encompasses known hazards based on the biological sample and associated risk group, as well as potential or unknown hazards, such as aerosol generation and instrument "failure modes." Cell sorting procedures undergo clearly defined biological safety assessments and adhere to well-established biosafety guidelines that help to protect SRL staff and users against aerosol exposure. Conversely, benchtop analyzers are considered low risk due to their low sample pressure and enclosed fluidic systems, although there is little empirical evidence to support this assumption of low risk. To investigate this, we evaluated several regions on analyzers using the Cyclex-d microsphere assay, a recently established method for cell sorter aerosol containment testing. We found that aerosol and/or droplet hazards were detected on all benchtop analyzers predominantly during operation in "failure modes." These results indicate that benchtop analytical cytometers present a more complicated set of risks than are commonly appreciated.


Subject(s)
COVID-19/prevention & control , Cell Separation/instrumentation , Containment of Biohazards , Equipment Contamination/prevention & control , Flow Cytometry/instrumentation , Laboratory Personnel , Occupational Exposure/adverse effects , Occupational Health , Aerosols , COVID-19/transmission , Humans , Risk Assessment , Risk Factors
10.
Cytometry A ; 99(5): 446-461, 2021 05.
Article in English | MEDLINE | ID: covidwho-1047149

ABSTRACT

Mass cytometry (CyTOF) represents one of the most powerful tools in immune phenotyping, allowing high throughput quantification of over 40 parameters at single-cell resolution. However, wide deployment of CyTOF-based immune phenotyping studies are limited by complex experimental workflows and the need for specialized CyTOF equipment and technical expertise. Furthermore, differences in cell isolation and enrichment protocols, antibody reagent preparation, sample staining, and data acquisition protocols can all introduce technical variation that can confound integrative analyses of large data-sets of samples processed across multiple labs. Here, we present a streamlined whole blood CyTOF workflow which addresses many of these sources of experimental variation and facilitates wider adoption of CyTOF immune monitoring across sites with limited technical expertise or sample-processing resources or equipment. Our workflow utilizes commercially available reagents including the Fluidigm MaxPar Direct Immune Profiling Assay (MDIPA), a dry tube 30-marker immunophenotyping panel, and SmartTube Proteomic Stabilizer, which allows for simple and reliable fixation and cryopreservation of whole blood samples. We validate a workflow that allows for streamlined staining of whole blood samples with minimal processing requirements or expertise at the site of sample collection, followed by shipment to a central CyTOF core facility for batched downstream processing and data acquisition. We apply this workflow to characterize 184 whole blood samples collected longitudinally from a cohort of 72 hospitalized COVID-19 patients and healthy controls, highlighting dynamic disease-associated changes in circulating immune cell frequency and phenotype.


Subject(s)
COVID-19/diagnosis , Cell Separation , Flow Cytometry , Immunophenotyping , Leukocytes/immunology , SARS-CoV-2/immunology , Workflow , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Case-Control Studies , Female , High-Throughput Screening Assays , Host-Pathogen Interactions , Humans , Leukocytes/metabolism , Leukocytes/virology , Male , Middle Aged , Predictive Value of Tests , SARS-CoV-2/pathogenicity , Severity of Illness Index , Young Adult
11.
J Immunol ; 206(3): 580-587, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-1040144

ABSTRACT

Gaining detailed insights into the role of host immune responses in viral clearance is critical for understanding COVID-19 pathogenesis and future treatment strategies. Although studies analyzing humoral immune responses against SARS-CoV-2 were available rather early during the pandemic, cellular immunity came into focus of investigations just recently. For the present work, we have adapted a protocol designed for the detection of rare neoantigen-specific memory T cells in cancer patients for studying cellular immune responses against SARS-CoV-2. Both CD4+ and CD8+ T cells were detected after 6 d of in vitro expansion using overlapping peptide libraries representing the whole viral protein. The assay readout was an intracellular cytokine staining and flow cytometric analysis detecting four functional markers simultaneously (CD154, TNF, IL-2, and IFN-γ). We were able to detect SARS-CoV-2-specific T cells in 10 of 10 COVID-19 patients with mild symptoms. All patients had reactive T cells against at least 1 of 12 analyzed viral Ags, and all patients had Spike-specific T cells. Although some Ags were detected by CD4+ and CD8+ T cells, VME1 was mainly recognized by CD4+ T cells. Strikingly, we were not able to detect SARS-CoV-2-specific T cells in 18 unexposed healthy individuals. When we stimulated the same samples overnight, we measured significant numbers of cytokine-producing cells even in unexposed individuals. Our comparison showed that the stimulation conditions can profoundly impact the activation readout in unexposed individuals. We are presenting a highly specific diagnostic tool for the detection of SARS-CoV-2-reactive T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Cell Separation/methods , SARS-CoV-2/immunology , Female , Humans , Male
12.
Stem Cell Res Ther ; 12(1): 1, 2021 01 04.
Article in English | MEDLINE | ID: covidwho-1007143

ABSTRACT

Adipose-derived stem cells (ADSCs) have raised big interest in therapeutic applications in regenerative medicine and appear to fulfill the criteria for a successful cell therapy. Their low immunogenicity and their ability to self-renew, to differentiate into different tissue-specific progenitors, to migrate into damaged sites, and to act through autocrine and paracrine pathways have been altogether testified as the main mechanisms whereby cell repair and regeneration occur. The absence of standardization protocols in cell management within laboratories or facilities added to the new technologies improved at patient's bedside and the discrepancies in cell outcomes and engraftment increase the limitations on their widespread use by balancing their real benefit versus the patient safety and security. Also, comparisons across pooled patients are particularly difficult in the fact that multiple medical devices are used and there is absence of harmonized assessment assays despite meeting regulations agencies and efficient GMP protocols. Moreover, the emergence of the COVID-19 breakdown added to the complexity of implementing standardization. Cell- and tissue-based therapies are completely dependent on the biological manifestations and parameters associated to and induced by this virus where the scope is still unknown. The initial flow chart identified for stem cell therapies should be reformulated and updated to overcome patient infection and avoid significant variability, thus enabling more patient safety and therapeutic efficiency. The aim of this work is to highlight the major guidelines and differences in ADSC processing meeting the current good manufacturing practices (cGMP) and the cellular therapy-related policies. Specific insights on standardization of ADSCs proceeding at different check points are also presented as a setup for the cord blood and bone marrow.


Subject(s)
Adipose Tissue/cytology , COVID-19 , Cell Separation/standards , Stem Cell Transplantation/standards , Stem Cells/cytology , Humans
13.
Anal Biochem ; 614: 114063, 2021 02 01.
Article in English | MEDLINE | ID: covidwho-967282

ABSTRACT

Many diseases, including cancers, AIDS, diabetes, asthma, Parkinson's, and lymphoma, are associated with the immune cell responses of patients suffering from them. Identifying the underlying immune response in such diseases is critical to correctly diagnose their root cause and determine the correct medications to target that root cause for personal therapy and immunotherapy. This work focuses on small molecular CF dyes to conjugate with antibodies, such as CD4 and CD19, for their application in flow cytometry. The CF dyes enable the expansion of flow cytometry reagent panels to support high dimensional flow cytometry analysis of the resulting emissions of 30-40 fluorescent colors, a record in flow cytometry. The CF dyes can be used along with existing flow cytometry dyes to provide a quick, accurate, and cost-effective method for the diagnosis and immunology treatment of diseases such as minimal residual disease (MRD) after cancer therapy. The CF dyes will also be an effective tool for the clinical studies of immune response to SARS-CoV-2 and the related vaccine development.


Subject(s)
COVID-19/diagnosis , Flow Cytometry , Fluorescent Dyes/chemistry , Immunity, Cellular/immunology , COVID-19/virology , Cell Separation , Fluorescence , Humans , Neoplasm, Residual/diagnosis , Neoplasm, Residual/immunology , Neoplasm, Residual/pathology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
14.
PLoS One ; 15(12): e0238010, 2020.
Article in English | MEDLINE | ID: covidwho-961459

ABSTRACT

Multiplexed bead-based assays that use Luminex® xMAP® technology have become popular for measuring antibodies against proteins of interest in many fields, including malaria and more recently SARS-CoV-2/COVID-19. There are currently two formats that are widely used: non-magnetic beads or magnetic beads. Data are lacking regarding the comparability of results obtained using these two types of beads, and for assays run on different instruments. Whilst non-magnetic beads can only be run on flow-based instruments (such as the Luminex® 100/200™ or Bio-Plex® 200), magnetic beads can be run on both these and the newer MAGPIX® instruments. In this study we utilized a panel of purified recombinant Plasmodium vivax proteins and samples from malaria-endemic areas to measure P. vivax-specific IgG responses using different combinations of beads and instruments. We directly compared: i) non-magnetic versus magnetic beads run on a Bio-Plex® 200, ii) magnetic beads run on the Bio-Plex® 200 versus MAGPIX® and iii) non-magnetic beads run on a Bio-Plex® 200 versus magnetic beads run on the MAGPIX®. We also performed an external comparison of our optimized assay. We observed that IgG antibody responses, measured against our panel of P. vivax proteins, were moderately-strongly correlated in all three of our comparisons (pearson r>0.5 for 18/19 proteins), however higher amounts of protein were required for coupling to magnetic beads. Our external comparison indicated that results generated in different laboratories using the same coupled beads are also highly comparable (pearson r>0.7), particularly if a reference standard curve is used.


Subject(s)
Cell Separation/methods , Immunoglobulin G/immunology , Immunomagnetic Separation/methods , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Humans , Magnetic Phenomena , Malaria/immunology , Malaria, Vivax/immunology , Male , Microspheres , Papua New Guinea/epidemiology , Plasmodium vivax/immunology , Protozoan Proteins/immunology , Technology
16.
Transfusion ; 60(9): 1905-1909, 2020 09.
Article in English | MEDLINE | ID: covidwho-613577

ABSTRACT

New York is at the epicenter of the coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 virus. Columbia University Irving Medical Center/NewYork-Presbyterian Hospital (CUIMC/NYPH) had to make changes to its cellular therapy operations to ensure patient, donor, and staff safety and well-being. In this article, we discuss the process changes we instituted for cellular therapy clinical care, collection, processing, and cryopreservation to cope with the rapidly evolving pandemic.


Subject(s)
Academic Medical Centers , COVID-19/epidemiology , Cell- and Tissue-Based Therapy/statistics & numerical data , Pandemics , SARS-CoV-2 , Academic Medical Centers/organization & administration , Academic Medical Centers/statistics & numerical data , Adult , Bone Marrow Transplantation/methods , Bone Marrow Transplantation/statistics & numerical data , COVID-19 Testing , Cell Separation/methods , Child , Clinical Trials as Topic/organization & administration , Cryopreservation/methods , Donor Selection , Humans , Immunotherapy, Adoptive/methods , Immunotherapy, Adoptive/statistics & numerical data , Lymphocyte Transfusion/methods , Lymphocyte Transfusion/statistics & numerical data , New York City/epidemiology , Organ Preservation/methods , Peripheral Blood Stem Cell Transplantation/methods , Peripheral Blood Stem Cell Transplantation/statistics & numerical data , Preservation, Biological/methods , Procedures and Techniques Utilization , Tissue Donors , Tissue and Organ Procurement/methods , Tissue and Organ Procurement/organization & administration
SELECTION OF CITATIONS
SEARCH DETAIL